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We present here a bimodal Floquet theoretical and experimental investigation of the direction of sweep
in the swept-frequency two pulse phase modulated (SWf -TPPM) scheme used for heteronuclear dipolar
decoupling in solid-state NMR. The efficiency of the decoupling turns out to be independent of the sweep
direction.
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1. Introduction

The combination of heteronuclear dipolar decoupling sequences
and magic angle spinning (MAS) has proven to be essential for
acquiring high resolution spectra of rare nuclei like 13C, which
are dipolar coupled to abundant spins like 1H or 19F [1]. Initially
continuous-wave (CW) irradiation of high RF amplitude (m1) was
used for decoupling [2] till the introduction of two pulse phase
modulation (TPPM) by Bennett et al. which was a significant mile-
stone as it led to considerable increase in efficiency of heteronu-
clear decoupling [3]. Theoretical and experimental investigation
into the modification of the basic unit of TPPM to improve its het-
eronuclear decoupling efficiency resulted in introduction of fre-
quency and/or phase modulation which led to sequences like
FMPM and AMPM [4,5]. Fung and co-workers introduced a
sequence called SPINAL which involved incremental phase alter-
ation of four units of TPPM [6]. A supercycled version of this
sequence, namely SPINAL-64 found wide range application in the
field of heteronuclear decoupling in solid-state NMR [6,7].

Recently, another sequence was introduced which involved an
adiabatic sweep over 11 pulse pairs of TPPM by varying the pulse
lengths of each pair of TPPM according to a tangential function [8].
This version is called SWf-TPPM. Variants of SWf-TPPM and swept
SPINAL-64 have been introduced recently [9,10]. Extensive exper-
ll rights reserved.
imental investigations and theoretical calculations have been done
to prove that SWf-TPPM is indeed better than the other decoupling
sequences in terms of sensitivity or robustness with respect to the
experimental conditions like pulse lengths, offset, and/or MAS
frequency [8,11–14].

For SWf-TPPM the pulse lengths for the 11 pair of pulses are
varied by multiplying the pulse length of the TPPM unit by a factor
which varies symmetrically around unity. Originally the factors
were varied according to a tangential function with the shortest
pulse pair being the first unit and the longest being the last unit
of the sequence [8]. Later it was found out that linear sweeps per-
form equally well[9]. In principle we can change the direction of
the sweep which means that the sweep can be in an increasing
fashion (forward sweep) or decreasing fashion (reverse sweep) as
schematically shown in Fig. 1. In this work we present theoretical
and experimental study on SWf-TPPM to investigate whether
changing the direction of sweep has any effect on the decoupling
efficiency.
2. Theory

The focus of this section will be on the formulation and investi-
gation of the properties of different sweeps in the SWf-TPPM
sequence using bimodal Floquet theory [11,15,16]. TPPM consists
of repetitive blocks of the form s/s�/ where the pulse length s
corresponds to a flip angle of �180�. SWf-TPPM is derived by
adding a sweep on the pulse lengths for 11 pairs of TPPM unit as
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Fig. 1. The multiplication factor (f n) for the 11 pair of pulses for (a) forward swept
SWf -TPPM and (b) reverse swept SWf-TPPM.
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mentioned earlier [8]. Here, / corresponds to the phase of the
pulses. The SWf-TPPM sequence considered here for the theoretical
purpose has the form {[0.78s/ 0.78s�/], [0.86s/ 0.86s�/], [0.94s/

0.94s�/], [0.96s/ 0.96s�/], [0.98s/ 0.98s�/], [s/s�/], [1.02s/

1.02s�/], [1.04s/ 1.04s�/], [1.06s/ 1.06s�/], [1.14s/ 1.14s�/],
[1.22s/ 1.22s�/]} for the forward sweep and {[1.22s/ 1.22s�/],
[1.12s/ 1.14s�/], [1.06s/ 1.06s�/], [1.04s/ 1.04s�/], [1.02s/

1.02s�/], [s/s�/], [[0.98s/ 0.98s�/], [0.96s/ 0.96s�/], [0.94s/

0.94s�/], [0.86s/ 0.86s�/], [0.78s/ 0.78s�/]} for the reverse sweep.
Schematic of both the sweep profiles are shown in Fig. 1.

2.1. The interaction frame Hamiltonian

The model that we choose for the purpose of calculation is a
spin system in which a single spin (S) of the rare nucleus is dipolar
coupled to N abundant spins like protons Ia(a = 1,2, . . . ,N). To
express the Hamiltonian of such a system under the influence of
both MAS and RF we have to go to the interaction frame of both
MAS and RF. The rotating frame representation of such a Hamilto-
nian under MAS can be represented as [11]:

HðtÞ ¼
X

a

DmaIð1Þ0;a þ
X
n;a

ragn;aIð1Þ0;aeinmr t þ
X
n;a

maGn;aIð1Þ0;aSð1Þ0 einmr t

þ m1f�þ1Ið1Þ1 þ ��1Ið1Þ1 g þ
X
n;a<b

mabGn;abIð2Þ0;abeinmr t ð1Þ

where IðlÞm and SðlÞm are irreducible tensor operators for the angular
momentum of the protons and the rare spin respectively. The first
term represents the isotropic chemical shift (Dma) of the 1H spin
whilst the second term represents the anisotropic chemical shift
whose strength is given by ra and the orientation dependence is
given by gn,a. The third term represents the heteronuclear dipolar
interaction of strength ma between the 1H and the S spins. The geo-
metrical dependence of the heteronuclear dipolar coupling is given
by Gn,a. The penultimate term is the time dependent RF field of the
decoupling sequence. The final term represents the homonuclear
dipolar coupling between the 1H spins, the magnitude of which is
given by mab whilst the geometrical dependence of the interaction
is given by Gn,ab [16].

To simplify Eq. (1) we divide the Hamiltonian into two parts
according to the eigenstates of the spin operator Sð1Þ0 , a(+) and b(-)
[17]:

Sð1Þ0 ¼
1
2

1 0
0 �1

� �
¼

aðþÞ 0
0 bð�Þ

� �

The resulting Hamiltonian can be written in the spin space of the 1H
as:
H�ðtÞ ¼
X

a

DmaIð1Þ0;a þ
X
n;a

ragn;aIð1Þ0;aeinmr t þ 1
2

X
n;a

maGn;aIð1Þ0;aeinmr t

� 1
2

X
n;a

maGn;aIð1Þ0;aeinmr t þ m1f�þ1Ið1Þ1 þ ��1Ið1Þ�1g

þ
X
n;a<b

mabGn;abIð2Þ0;abeinmr t ð2Þ

Eq. (2) can be simplified to

H�ðtÞ ¼
X
n;a

ðDma þ ragn;aeinmr t � 1
2
maGn;aeinmr tÞIð1Þ0;a þ m1f�þ1Ið1Þ1

þ ��1Ið1Þ1 g þ
X
n;a<b

mabGn;abIð2Þ0;abeinmr t

¼
X
n;a

DX�n;aIð1Þ0;a þ m1f�þ1Ið1Þ1 þ ��1Ið1Þ�1g

þ
X
n;a<b

mabGn;abIð2Þ0;abeinmr t ð3Þ

where

DX�n;a ¼ Dma þ ragn;aeinmr t � 1
2
maGn;aeinmr t

For each of these Hamiltonians a time-dependent evolution opera-
tor can be defined in the proton space which is of the form

U�ðtÞ ¼ T expf�i
Z t

0
H�ðsÞdsg ð4Þ

The ideal decoupling condition is achieved when the S spin sig-
nal is not modulated by the evolution operator from the I spins, a
condition which can be achieved when U+(t) � U�(t).

The pulse sequences are all cyclic and comprise of elements of
overall duration sc, which repeats itself in the time-domain. This
introduces the second time dependence in the Hamiltonian ðH�Þ
given by Eq. (3), which shows another periodicity with a character-
istic frequency mc. So the Hamiltonian is modulated by two fre-
quencies mr and mc which are not necessarily commensurate.
Average Hamiltonian Theory [18] cannot deal with two such
incommensurate time dependencies simultaneously. So to under-
stand the properties of decoupling here we have to rely on bimodal
Floquet theory which allows us to derive an effective Hamiltonian
for a spin system experiencing two time dependencies simulta-
neously [16]. In order to refrain from going into a third time-
dependency [19], the sequences described here are all of constant
amplitude but phase modulated. In the rotating frame we have an
irradiation which has oscillating components along ±xz-plane as
shown in Fig. 2a. We choose an interaction frame which corre-
sponds to a CW irradiation of constant amplitude in the y direction
in the rotating frame as shown in Fig. 2a. This irradiation has an
amplitude mint = qmc whose magnitude should be as close as possi-
ble to the actual RF amplitude with the criterion, jm1 � qmcj < 0.5mc.
A transformation to the RF interaction frame leaves a small compo-
nent along the y direction and components in the ±xz plane as
shown in Fig. 2b. The Hamiltonian in the interaction frame can
be expressed as:fH�ðtÞ ¼

X
m;n;k;a

DX�n;adð1Þm;kIð1Þm;aeinmr teikmc t

þ
X

m;n;k;a<b

mabGn;abdð2Þm;kIð2Þm;abeinmr teikmc t þ
X
m;k

m1�m;kIð1Þm eikmc t ð5Þ

The Fourier coefficients dð1Þm;k and dð2Þm;k are defined by the frame trans-
formation followed by a Fourier expansion

e�imint Iyt IðlÞ0 eimint Iyt ¼ dðlÞm;kIðlÞm eikmc t ð6Þ

where k/q = 0, ±1 for l = 1 and k/q = 0, ±1, ±2 for l = 2. The Fourier
coefficients �m,k are defined by the Fourier expansion which follows
the frame transformation



Fig. 2. Schematic representation of the CW interaction frame of constant amplitude in y-direction and the RF components in both the (a) rotating and the (b) interaction
frame. (a) In the rotating frame the RF components oscillates in the xz plane with an angle / and RF amplitude m1 (shown by red arrow). The interaction frame is represented
by an RF irradiation of constant amplitude (mint = qmc) pointing in the y-direction (shown by blue arrow). (b) Transformation to the interaction frame results in a residual field
in the xz-plane (shown by red arrow) whilst a small residual component is left behind in the y-direction (shown by green arrow). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

S. Paul et al. / Journal of Magnetic Resonance 209 (2011) 261–268 263
m1e�imint Iyt �þ1ðtÞIþ1 þ ��1ðtÞI�1 þ mint Iy
� �

eimint Iyt

¼ m1e�imint Iyt �þ1ðtÞIþ1 þ ��1ðtÞI�1 þ
i
2
mintðIþ1 � I�1Þ

� �
eimint Iyt

¼
X
m;k

�m;kIð1Þm eikmc t ð7Þ

Here, k runs from �1 to +1.

2.2. Floquet Hamiltonian and van Vleck transformation

In order to derive the decoupling conditions we have to make
the Hamiltonian time independent and then diagonalise it. The
first step involves expressing the Hamiltonian in the Floquet space
which removes the time-dependency from the Hamiltonian but
makes it infinite dimensional whilst the second step involves
either direct diagonalisation or some transformation which can
generate approximate block diagonals. The interaction frame Ham-
iltonian from Eq. (5) can be written in the Floquet representation
as

H�
F ¼

X
n;k

H�
nkFr

nFc
k þ mrN

r þ mcNc ð8Þ

where

H�
nk ¼

X
m;n;k;a

DX�n;adð1Þm;kIð1Þm;a þ
X

m;n;k;a<b

mabGn;abdð2Þm;kIð2Þm;ab þ
X
m;k

m1�m;kIð1Þm

ð9Þ

and, F and N are the number and the ladder operators respectively
[20]. The number and ladder operators, and H�

nk are shown in the
matrix form in Figs. 3 and 4 respectively.

Inspection of the Hamiltonian given by Eq. (9) reveals that the
first term containing DX�n;a creates the difference between Hþ

F and
H�

F . The RF modulation comes from the second term. The purpose
is to generate �m,k coefficients which can minimise the difference
between the Hamiltonians so that the condition U+(t) � U�(t) is
achieved. A van Vleck transformation [21] is then applied which
generates block-diagonals in the Fourier space where the off-diago-
nal blocks are small and can be ignored. We also ignore here the
off-diagonal blocks generated by the homonuclear couplings by
putting mab = 0. These can be treated separately as shown in Ref. [11].

The van Vleck transformation can be done in two steps. Firstly
the transformation is done on the first term in Eq. (9) containing
the heteronuclear dipolar terms. For sequences with very small
m1�mk,k – 0, their off-diagonal elements m1�mkFr
0Fc

k

� 	
can be ignored,

but with increasing magnitude of these elements, an additional
van Vleck transformation is performed. For some decoupling se-
quences, like SWf-TPPM at high m1 and /, it may so happen that
the magnitude of the elements m1�mk becomes of the order of or
higher than mc. In such a situation, the van Vleck transformation
cannot be performed and direct diagonalisation is the only way.
We have not gone into the regime of high RF amplitude and phase
values in the present work and hence van Vleck transformation is
sufficient to generate the approximate block diagonals.

The first van Vleck transformation is done on elements arising
from the first term in Eq. (9). Leaving the off-diagonal RF elements
untouched, the block diagonalised Floquet Hamiltonian containing
only zero- and first-order terms can be written as:

K�F � ffHrf
00 þ fHðd�ISÞ�rf ð�Þ

00 þ fHðd�ISÞð�Þ
00 gFr

0Fc
0 þHrf

0kFr
0Fc

k

þ mrN
r þ mcNc ð10Þ

where

fHrf
00 ¼

X
m

m1�m;0Ið1Þm

fHðCS�ISÞ�rf ð�Þ
00 ¼ �1

2

X
a;m;m0 ;k–0

DX�0;am1
dð1Þm;k�m0 ;�k

kmc
½Ið1Þm ; Ið1Þm0 �

fHðCS�ISÞð�Þ
00 ¼ �1

2

X
a;m;m0 ;n;k–0

DX�n;aDX��n;a

dð1Þm;kdð1Þm0 ;�k

nmr þ kmc
Ið1Þm ; Ið1Þm0

h i
ð11Þ

The first term represents contribution from the RF and the sec-
ond term correlates the CSA term with itself, the heteronuclear
dipolar coupling with itself, the cross-term between the two, and
the cross-term between the RF, CSA, and heteronuclear dipolar
couplings. The third term correlates CSA with itself, heteronuclear
dipolar coupling with itself, and the cross-terms between the two.
The off-diagonal elements due to the RF are given by

Hrf
0k ¼

X
m;k

m1�m;kIð1Þm ð12Þ

A matrix representation of the first and the second term of Eq. (10)
is schematically shown in Fig. 5b which is obtained by applying van
Vleck transformation on the matrix (Fig. 5a) given by Eq. (9).

The second van Vleck transformation essentially brings the off-
diagonal elements as shown in Fig. 5b to the diagonal as schemat-



Fig. 3. The matrix representation of the number operators (a) Nc and (b) Nr, and the ladder operators (c) Fc
�1and (d) Fr

�1 in the Fourier states jn,ki with n representing the
Fourier states corresponding to the spinning frequency mr, and k representing the Fourier states corresponding to the cycle frequency of the RF mc. All the matrices shown here
are infinite dimensional.

Fig. 4. Different elements of the Floquet Hamiltonian for a spin system experiencing two characteristic frequencies mc and mr in the matrix representation. The matrix is
composed of infinite dimensional blocks (�1 6 k 61) which constitute an infinite-dimensional matrix (�1 6 n 61). The different elements in Eq. (8) are shown in the
matrix as indicated on the figure.
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ically shown in Fig. 5c. The second van Vleck transformation on
Hrf

0kresults in the Hamiltonian that can be represented as

K�F � ffHrf
00 þ fHðd�ISÞ�rf ð�Þ

00 þ fHðd�ISÞð�Þ
00 gFr

0Fc
0 þ mrN

r þ mcNc ð13Þ

The zero- and first-order terms of fHrf
00 in H�

eff are given by

fHrf
eff ¼

X
m

m1�m;0Ið1Þm �
m2

1

2

X
m;m0 ;k–0

�m;k�m0 ;�k

kmc
½Ið1Þm ; Ið1Þm0 � ð14Þ

To understand the decoupling condition and to simplify the
expressions we convert the irreducible tensor representations to
linear angular momentum operators using the following relations:

Ið1Þ0 ¼ Iz dð1Þ0;k ¼ dz;k �0;k ¼ �z;k

Ið1Þ1 ¼ � 1ffiffi
2
p ðIx þ iIyÞ dð1Þ1;k ¼ � 1ffiffi

2
p ðdx;k þ idy;kÞ �1;k ¼ � 1ffiffi

2
p ð�x;k þ i�y;kÞ

Ið1Þ�1 ¼ 1ffiffi
2
p ðIx � iIyÞ dð1Þ�1;k ¼ 1ffiffi

2
p ðdx;k � idy;kÞ ��1;k ¼ 1ffiffi

2
p ð�x;k � i�y;kÞ
The effective Hamiltonian in the basis of the linear angular
momentum operators for the three terms in Eq. (13) is given by
[11]:

fHrf
eff ¼

X
p

m1�p;0Ip �
m2

1

2

X
p;p0 ;k–0

�p;k�p0 ;�k

kmc
½Ip; Ip0 �

fHðCS�ISÞ�rf
eff ¼ �1

2

X
a

Dm2
a

qmc
Iy �

X
a;p;p0 ;k¼�q

Dmam1
dp;k�p0 ;�k

kmc
½Ip; Ip0 �

fHðCS�ISÞ�
eff ¼ �1

2

X
a;n–0

DX�n;aDX��n;a
qmc

n2m2
r � q2m2

c
Iy

ð15Þ
Fig. 5. A schematic representation of the two van Vleck transformations done on (a) H�
F

the transformation is done on the first term in Eq. (9) leaving the m1�mkFr
0Fc

k is shown in (b
elements (red squares) (second term in Eq. (10)) are shown here. (c) Schematic represent
transformation. The final van Vleck results in diagonal elements with k and n = 0. (For int
the web version of this article.)
The last term in Eq. (15) is the only term which creates the differ-
ence between the Hamiltonians fHþ and fH�. This term must be
suppressed to minimise the heteronuclear dipolar broadening of
the spectra. The term has the linear angular momentum operator
Iy. However, a careful look at the other two terms reveals that all
the three terms contribute to the magnitude of the coefficient of
the linear operators pointing in the y-direction. The contributions
coming from these three terms are however, indistinguishable in
the Hamiltonian. So the RF should have a minimal y-component
and the xz component of the RF must suppress the influence of all
the Iy terms.

2.3. The decoupling condition

The decoupling condition is derived from fHrf
eff in Eq. (15). In or-

der to evaluate and verify the decoupling conditions we have car-
ried out simulations on a 13 CHH2 fragment where, one 1H is
directly bonded to the 13C whilst the other two non-bonded 1H
are dipolar coupled to the carbon through space. We measure
the linewidth of the carbon peak as a function of m1 and / for the
sequence SWf-TPPM. We have done simulations and calculations
for the forward and reverse sweeps on pulse lengths of the SWf-
TPPM in order to investigate whether change in the direction of
the sweep makes any change in the decoupling condition.

Numerical simulations were carried out using the SPINEVOLU-
TION programme [22]. The RF amplitude is varied in the range of
80–119 kHz and the phase is varied in the range of 5–35�. The line-
width of the 13C peak is plotted as a function of m1 and / in Fig. 6.
The contour profiles for both the sequences hint that changing the
direction of the sweep has no effect on the decoupling efficiency
given in Eq. (8). The matrix obtained after the first van Vleck transformation where
). Both the diagonal elements (grey squares) (first term in Eq. (10)) and off-diagonal
ation of the matrix for the first term in Eq. (13) obtained after the second van Vleck
erpretation of the references to colour in this figure legend, the reader is referred to
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and this will be corroborated by experimental and theoretical
findings.

As mentioned earlier, the part of the effective HamiltonianfHrf
eff that leads to line broadening is proportional to Iy and these

can be eliminated or reduced by xz-component coming fromfHrf
eff . For all the decoupling sequences an RF amplitude can be

found out which leads to complete elimination of the y-compo-
nent. So the first criterion for decoupling is the elimination of the
y-component by choosing proper experimental parameters whilst
the quality of the decoupling is then determined by the suppres-
sion of the y-components by the xz -components. The elimination
of the y-components alone does not serve the purpose of decou-
pling due to the off-resonance and RF inhomogeneity effects. As
a result the suppression of these terms by the xz-components is
important.

On the contours shown in Fig. 6a and b, the m1for the decoupling
conditions are plotted at the respective / values where the y-com-
ponent goes to zero for both reverse and forward sweeps of SWf-
TPPM. These calculations were done with an interaction frame fre-
quency of mint = 100 kHz and q = 11. Both the zero- and first-order
terms have been included in the calculation and the Fourier coeffi-
cients �p,k have been extracted upto k = 100. From the figure it can
be ascertained that the decoupling condition falls on the region
where the line width is minimal. For both the forward and reverse
sweeps the decoupling condition falls exactly at the same position
of the RF amplitude inferring that changing the direction of the
sweep does not affect decoupling.

Fig. 7 shows the magnitude of the xz-component for both the (a)
forward and (b) reverse sweeps of SWf-TPPM at the decoupling
condition. The magnitude of the components remains the same
irrespective of the direction of the sweep.

Fig. 8 shows the ratio between the magnitude of the y-compo-
nent to that of the component in the xz-plane as a function of the
RF amplitude for a phase value which is chosen to be / = 15� for
both (a) forward and (b) reverse sweeps. For both forward and re-
verse sweeps the best decoupling is obtained at a pulse length
which is slightly higher than that corresponding to a flip angle of
180�.

The direction of the sweep for a decoupling sequence is impor-
tant because for more complex sequences like SPINAL-64 and
recently introduced supercycled version of SWf-TPPM [23], chang-
ing the direction of the sweep produces different results. In the
SWf-TPPM sequence, only the pulse durations are incrementally
Fig. 6. Simulated line-width of a 13CHH2 system obtained with SPINEVOLUTION program
with reverse sweep. The isotropic chemical-shift separation between the H and the H2 sys
The fragment has a dipolar coupling strength of 22 kHz between 13C and two of the proto
the protons and the ZCW scheme of powder averaging [25–27] with 610 pair of crystall
cycle times are 110 ls for both (a) and (b). The spinning frequency was kept at 10 kHz. Th
line on the contour represents the calculation where the residual field component along
changed, whereas the phase angles remain constant. For most
implementations of SWf-TPPM, the building block consists of an
odd number of pulse pairs (usually 11). Therefore, reversal of the
frequency sweep is easily accomplished by an exact inversion of
the sequence around the centre pulse pair. Matters are more com-
plex for decoupling sequences where both pulse duration and
phase angle are altered within the building block like SW-SPINAL
[10]. The addition of small phase angle increments in SPINAL is
not done in a fully cyclic manner. This means that the basic build-
ing block (often designated by Q) starts and ends with different
phase angles, making a symmetric inversion within Q impossible.
Furthermore, the Q blocks are assembled into super-cycles of the
type QQQQQQQQ , so sweeps may be defined in different
extensions over the Q blocks. Consequently, the behaviour of the
SW-SPINAL sequence upon change of sweep direction is more
complex. Experimentally and numerically, we found that by
inverting the pulse duration increment only (i.e., keeping the phase
change pattern as in the forward sweep), the performance tends to
deteriorate. However, numerical simulations indicate that also for
the ‘‘fully’’ inverted sequence, performance differences between
forward and reverse sweeps may occur. A similar complex behav-
iour is expected for the super-cycled version of SWf-TPPM, which
was recently suggested for efficient spin decoupling in liquid crys-
talline systems [23].
3. Experimental

The experiments were carried out on Bruker 400 MHz spec-
trometers using a 4 mm triple-resonance probe on commercially
available unlabelled L-Tyrosine for proton decoupling and potas-
sium nonafluoro-1-butanesulfonate (NBFS-K) for fluorine decou-
pling. The molecular structure and assignment of the 13C spectra
of NBFS-K are given in Ref. [24].
4. Results and discussions

In order to describe the nature of the sweep used in the exper-
iments we define some parameters as defined earlier in the Ref. [9].
The SWf-TPPM sequences described here consists of q pulse pairs
of TPPM where q = 11 for the present work. The pulse duration of
the nth pulse (n = 0,1,2, . . . ,q � 1) is given by sn

p ¼ f nsp. The fn

function defines the nature of the sweep. The functions are defined
in Table 1 for the two different directions of sweep and the
me as a function of m1 and / for (a) SWf-TPPM with forward sweep and (b) SWf-TPPM
tem was 2 ppm and the irradiation frequency on the protons was kept on resonance.
ns and 10 kHz with the other proton. The simulations were done with 1 kHz CSA on
ite orientations. The homonuclear couplings have been switched off (see text). The
e phase resolution was 0.5� and the RF amplitude resolution was 0.5 kHz. The dotted

Iy has been nullified (see text).



Fig. 7. The magnitude of the component in the xz-plane as a function of phases (/) of the pulses for (a) forward swept SWf-TPPM and (b) reverse swept SWf-TPPM at m1 where
the y-component has been nullified as shown in Fig. 5.

Fig. 8. The ratio of the effective RF field component along y to its xz-component at / = 15� at different RF amplitudes for (a) forward swept SWf-TPPM and (b) reverse swept
SWf-TPPM.

Table 1
Calculation of multiplication factors for the pulses of SWf-TPPM used in the
experiment. The cycle constitutes of q pair of pulses of alternating phase / and �/,
with f0 being the factor of the first and fq�1 being the factor of the last pair of pulses.
The tangent cut-off angle (tco) has to be defined. The actual pulse duration sn

p is defined
by sn

p ¼ f nsp , where sp is the length of one of the pulses in the TPPM unit which has
been used to build the SWf-TPPM sequence.

Functions Magnitudes

Specified
parameters

f0, fq�1, tco, q 0.60, 1.46, 60�, 11

Functions d = fq�1 � f0 0.80
Defining the

sweep
x ¼ tcoð�1þ 2

q�1 nÞ �48��36��24��12�0�
12�24�36�48�60�72�

Factor for nth
pulse

f n ¼ f 0 þ d
2 ð1þ tan x

tan tco
Þ 0.69 0.75 0.79 0.83 0.86

n = 1,2, . . . ,q � 1 0.89 0.93 0.97 1.04 1.13 1.34

Fig. 9. Offset dependence of the 13C resonance of the CH2 peak of tyrosine for
forward (filled circles) and reverse sweeps (hollow circles) on SWf-TPPM. The offset
on the protons was varied in the range of ±6 kHz. The MAS frequency was kept at
10 kHz and the decoupling RF amplitude employed was 80 kHz.
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parameters defining the sweep at the experimental condition are
enlisted in Table 1.

Fig. 9 shows the intensity of 13CH2 peak of tyrosine as a function
of the offset on the 1H channel. The spinning frequency is kept at
10 kHz and the RF amplitude used for decoupling is 80 kHz. From
the figure it is evident that changing the direction of the sweep has
no effect on the efficiency of decoupling.

Fig. 10a and b show the 19 F-decoupled 13C spectra of NBFS-K at
mr = 10 kHz and m1 = 80 kHz. The intensity obtained is the same
irrespective of the direction of the sweep on the 11 pairs of pulses
of SWf-TPPM.
Fig. 11a and b show offset-dependence of the b- and c-13C peaks
of NBFS-K. The offset has been varied on the 19F channel whilst the
intensity of the 13C peaks are monitored. The intensity obtained is
independent of the direction of the sweep as both forward and re-
verse SWf-TPPM deliver the same performance.



Fig. 10. Spectral comparison of the 13C resonances of the compound NBFS-K
obtained by decoupling the 19F abundant spins at mr = 10 kHz and m1 = 80 kHz. The
molecular structure and resonance assignment are given in Ref. [24].

Fig. 11. Offset dependence of the (a) b and (b) c- 13C resonances NBFS-K for forward
(filled circles) and reverse sweeps (hollow circles) on SWf-TPPM. The offset on the
protons was varied in the range of ±10 kHz. The MAS frequency was kept at 10 kHz
and the decoupling RF amplitude employed was 80 kHz.
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5. Conclusions

We have investigated the direction of the sweep in SWf-TPPM se-
quence using bimodal Floquet theory. We observe that experimental
results with modulations, in either pulse duration as in SWf-TPPM or
both phase and pulse duration as in Ref. [13] (not shown here), that
possess an inversion point of symmetry the direction of sweep does
not affect the experimental results. This is established here by tho-
retical arguments, simulations, and experimental results. Experi-
mental data are presented which involve heteronuclear
decoupling of abundant spins like 1H and 19F.
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